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Introduction
Combustion instabilities are caused by the interaction of
acoustics and unsteady heat release. They lead to an in-
crease in noise and structural loading, and are especially
common in the lean–premixed fuel systems designed to
reduce NOx emissions. Understanding, preventing and
suppressing these instabilities [1] is therefore a research
priority.

Due to the complexity of real combustors, simple models
of combustors containing an ‘anchored ducted–flame’ are
commonly used in the first instance. These combine (i)
a simple model of the acoustic wave behaviour with (ii)
a flame model which captures how the flame responds
to, and generates, acoustic waves. One of the most
widely used flame models is the G–Equation model
[2]. It models the kinematics of the flame non-linearly,
capturing effects such as saturation into limit cycle,
and showing reasonable agreement with experimental
results [4, 6]. When implementing the G–Equation in
anchored ducted-flame models, it has always previously
been assumed that the discontinuity or “jump” in the
acoustic wave strengths due the flame remains immobile
and at the flame anchor position. This is despite the
fact that the time-space average position of the flame is
generally located a distance downstream of the anchor,
and that furthermore the spatial-mean position of the
flame oscillates in time.

The first improvement to the standard anchored ducted–
flame model considered in this paper is to investigate the
effect of using an acoustic wave strength discontinuity
located at the time-space average position of the flame,
rather than at the flame anchor. A further improvement
is to allow the position of the acoustic waves strength
discontinuity to vary in time, tracking the location of
the spatial-mean position of the flame. This allows us
to account for the direct effects of the flame movement
on the acoustic source location. The discontinuity loca-
tion alters the phase relationship between the acoustic
pressure and unsteady heat release rate [9, 8], and so the
effect of this change on combustor stability and, in cases
of instability, limit cycle amplitude, is considered.

Review of the anchored ducted–
flame model
We first review the anchored ducted–flame model in
the form in which it has previously been used, before
describing our improvements.

The model considers (i) the acoustic waves and (ii)
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Figure 1: Schematic of the combustor duct, showing the
incoming and outgoing pressure waves and the pressure
reflection coefficients at the boundary. The discontinuity in
acoustic wave strengths is positioned at the point where the
flame is anchored to the flame holder: xb = 0 m.

the flame motion, coupling these via equations for the
“jumps” or discontinuities in acoustic variables across the
flame anchor position.

Considering first the acoustic waves, the mean flow
is considered uniform upstream and downstream
of the flame, and the presence of vorticity or
entropy waves neglected. The flow variables can
be decomposed into a steady mean, and a small
acoustic fluctuation: (p (t, x) , u (t, x) , ρ (t, x)) =(
P ,U, ρ

)
+ (pa (t, x) , ua (t, x) , ρa (t, x)), such that only

linear fluctuations need be retained. Frequencies are
assumed sufficiently low for only plane acoustic waves to
exist - these can then be expressed using the method of
characteristics [6], as shown in Figure 1.

Upstream of the flame–induced discontinuity (u) the
acoustic variables are [3]:

pa (x, t) = C (t− τuC
(x)) +A (t+ τuA

(x)) [Pa] (1)

ua (x, t) =
C (t− τuC

(x))−A (t+ τuA
(x))

ρucu
[m/s] (2)

while downstream (d):

pa (x, t) = B (t− τdB
(x)) +D (t+ τdD

(x)) [Pa] (3)

ua (x, t) =
B (t− τdB

(x))−D (t+ τdD
(x))

ρdcd
[m/s] (4)

where the density is ρa (x, t) = pa(x,t)
c2

and c is the speed
of sound. The time delays

τuA
(x) =

x− xb
cu − Uu

τuC
(x) =

x− xb
cu + Uu

[s] (5)

τdB
(x) =

x− xb
cd + Ud

τdD
(x) =

x− xb
cd − Ud

[s] (6)

represent:

• τuA
(x): the time taken for wave A (t) to go from the

discontinuity xb to a point upstream x;



• τuC
(x): the time taken for wave C (t) to go from a

point upstream x to the discontinuity xb;
• τdB

(x): the time taken for wave B (t) to go from the
discontinuity xb to a point downstream x;

• τdD
(x): the time taken for wave D (t) to go from a

point downstream x to the discontinuity xb.

Pressure reflection coefficients are used to impose physi-
cal behaviour at boundaries:

C (t− τuC
(xu)) = RuA (t+ τuA

(xu)) [Pa] (7)

D (t+ τdD
(xd)) = RdB (t+ τdB

(xd)) [Pa]. (8)

The effects of the flame on the acoustics are imposed at
the flame anchoring position. Wave strengths either side
of the the anchor position are then related by imposing
the flow conservation equations across the flame [7]. The
conservation of energy means that the acoustics wave
strengths are not constant across the flame, but rather
experience a “jump” or discontinuity, which depends
upon the total heat release rate, Q, of the flame [7].

A flame model is needed to capture the variation in Q(t).
The well-known G–Equation model assumes that the
flame responds to the flow velocity directly upstream, its
motion being governed by a non-linear partial differential
equation: the G–Equation. This is derived by assuming
that the flame initiation surface G is convected by its
relative burning velocity ugutter − Su · n (n being the
unit normal to the flame), such that DG

Dt = 0 [7]. The
movement and shape of the flame are then tracked by
considering G = x− ξ (t, r);

∂ξ

∂t
= ugutter − Su

√
1 +

(
∂ξ

∂r

)2

[m/s] (9)

where ugutter is the velocity just upstream of the discon-
tinuity, r is the radial position in the duct, and Su is
the laminar burning velocity, usually chosen empirically.
Anchoring of the flame is imposed through ξ = 0 at
the anchor point (here x = 0). It is assumed that
Q (t) ∝ A (t− τf ), where τf is chosen empirically and
the flame area A is given by:

A (t) =

∫ rb

ra

2πr

√
1 +

(
∂ξ

∂r

)2

dr
[
m2
]

(10)

where ra is the radius of the flame holder, and rb is the
radius of the duct. Thus at any point in time, the jump
in the wave strengths either side of the flame depends on
the flame area and hence the instantaneous flame shape.

Varying the discontinuity position
In the above, the position at which the flow conservation
equations were applied and at which the acoustic waves
experienced a discontinuity (xb), was fixed in time at
the flame anchoring position. For compact flames and
small amplitude oscillations, this is usually a good
approximation [3]. However, when the combustor is
unstable, the amplitude of the flame motion can become
large [5]. Then, even under the simplifying assumption

that the heat release can be referred to as a single
axial location (necessary when assuming plane acoustic
waves), the flame–induced acoustic wave discontinuity
should follow the spatial–mean flame position in time.

To account for the flame movement, the location of the
acoustic wave discontinuity is now denoted xb (t), and
the time delays (5) and (6) become:

τuA
(x, t) =

x− xb (t)

cu − Uu

τuC
(x, t) =

x− xb (t)

cu + Uu

[s] (11)

τdB
(x, t) =

x− xb (t)

cd + Ud

τdD
(x, t) =

x− xb (t)

cd − Ud

[s] (12)

xb (t) now tracks the average location of the heat release
xf (t) in time, this being given by the area-weighted mean
flame position (as Q(t) ∝ A(t− τf )):

xf (t) =

∑n
k=1Ak (t− τf ) ξk (t− τf )∑n

k=1Ak (t− τf )
[m]. (13)

Here Ak is the incremental flame area at the discrete
position ξk, computed in a similar fashion to (10) such
that A =

∑n
k=1Ak. Since Ak depends on the flame

shape position ξ, it follows that xb (t+ τf ) depends on
the pressure waves C (t) and A (t) just ahead of the flame.
That is, the acoustic wave strengths ahead of the flame
depend on the flame position, but the flame position
depends on these wave strengths. Thus the acoustic
discontinuity location and flame are now coupled.

To overcome this problem, we know that waves A (t) and
B (t), moving away from the discontinuity, are obtained
directly from the jump equations, and are not part of the
coupled problem (even if the location at which they are
emitted is for now unknown). The strengths of waves C
and D as they arrive at the discontinuity requires more
work. From equation (7), it follows that C (t) and D (t)
at xb(t) depend only on the outgoing wave strengths A
and B at previous times t− τu and t− τd, where

τu = −τuA
(xu, t− τu)− τuC

(xu, t) [s] (14)

τd = τdB
(xd, t− τd) + τdD

(xd, t) [s]. (15)

τu and τd represent the times taken for a wave to travel
from the discontinuity to the boundary and back to the
(changed position of the) discontinuity again. These two
time delays depend on the values of xb when A and B
leave the discontinuity, xb (t− τu) and xb (t− τd), as well
as xb(t) when C and D arrive back at the discontinuity.

Thus the waves C (t) and D (t), arriving at the disconti-
nuity location xb(t), depend on xb at three times: xb (t),
xb (t− τu) and xb (t− τd). xb (t) depends, amongst other
variables, on the upstream wave C(t−τf ). As is common
in moving acoustic source problems, such as those en-
countered in helicopter acoustics [10], the problem must
be solved iteratively. This yields equations:

xb (t) = f (ugutter (t− τf ) , ξ (t− τf )) [m] (16)

τuA
(xu, t− τu) =

xu − xb (t− τu)

cu − Uu

[s] (17)

τdB
(xd, t− τd) =

xd − xb (t− τd)

cd + Ud

[s] (18)



Table 1: Combustor parameters for the test cases
investigating combustor stability.

Case xu[m] xd[m] xref [m] Ru Rd Mu

1 -0.3 .841 0.33 -1 -1 0.08
2 -1.5 .6855 0.22 0.85 -.98 0.08

Table 2: Combustor dominant oscillation frequencies for the
test cases investigating combustor stability.

Frequencies [rad/s]
Case xb = 0 xb = xf xb (t) = xf (t)

1 244 277 277
2 336 360 360

where f (ugutter, ξ) is a function including the area
weighted mean (13) and the G–Equation (9).

Results
To investigate the effects of implementing the acoustic
jump location more accurately, two sets of combustor
test cases are considered. The first set is concerned
with combustor stability, while the second set considers
limit cycle amplitude. for both sets the upstream total
temperature is T0 = 288 K, mean heat release rate is
Q = 59 MJ m2/s, downstream mean pressure is P =
1.013 · 105 Pa and duct dimensions are ra = 1.75 cm and
rb = 3.5 cm. We compare results for three discontinuity
location implementations:

• the standard ducted–flame model with xb = 0;
• the discontinuity position fixed at the space-time

average flame position, xb = xf ;
• the discontinuity position moving in time to track

the spatial-mean flame position, xb (t) = xf (t).

Combustor stability
Two test cases are considered here, for which the combus-
tor geometries, upstream Mach number and boundary re-
flection coefficients are shown in Table 1 (the normalised
acoustic pressure, pref , at location xref is measured).

The resulting dominant oscillation frequencies are shown
in Table 2. It is seen that accounting for the shift in
the spatial-mean position of the flame gives rise to a
frequency shift of up to 14%, due to the change in mode
shape.

The envelopes of the corresponding pressure oscillations
are shown in Figure 2. For both cases:

• xb = 0 gives rise to an unstable system which quickly
saturates into a limit cycle.

• xb = xf gives rise to an unstable system with a much
lower oscillation amplitude (still slowly growing –
true limit cycle saturation has not yet occurred)

• xb (t) = xf (t) gives rise to a stable system whose
oscillation amplitude is slowly decaying.

Thus accounting for the movement of the flame (by
shifting the mean position at which the flame-induced
discontinuity is assumed to occur) is seen to be important
in accurately capturing the stability of the system in
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Figure 2: Envelope of the normalised pressure pref :
xb = 0 (multiplied by a factor 1/6); xb = xf ;
xb (t) = xf (t). Case 1 left, case 2 right.

Table 3: Combustor parameters for the test case
investigating limit cycle amplitude.

xu[m] xd[m] xref [m] Ru Rd Mu

-1.0 1.015 0.33 0.85 -.98 0.08

these test cases.

Limit cycle amplitude
For the test case chosen here, summarised by the param-
eters in Table 3, high amplitude limit cycle oscillations
occur which give rise to large amplitude motion of the
flame-induced discontinuity.

The dominant oscillation frequency is observed to be 320
rad/s using xb = 0, 333 rad/s using xb = xf and 325
rad/s using xb (t) = xf (t), again showing a significant
shift depending on the location of the discontinuity. The
envelopes of the corresponding pressure oscillations are
shown in Figure 3. It can be observed that using xb (t) =
xf (t) leads to a substantial 47% decrease in negative
peak amplitude when compared to the xb = xf case.
This demonstrates that there are likely to be conditions
under which accounting for flame movement, by changing
the location of the acoustic discontinuity, is important in
determining the limit cycle amplitude.

Discussion
To further understanding of why applying the acoustic
jump location more accurately affects both stability
and limit cycle amplitudes, the well-known Rayleigh
source term, paQ

′ (averaged over an oscillation cycle)
is considered. It is well known from the Rayleigh
criterion [9] that the larger this source term, the more
likely it is to exceed loss terms and give rise to instability.
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Figure 3: Normalised limit cycle pressure fluctuation, pref :
xb = 0; xb = xf ; xb (t) = xf (t).
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Figure 4: Normalised Rayleigh source term: xb = 0
(Cases 1 and 2 multiplied by factors 0.5 and 0.02 respectively);

xb = xf ; xb (t) = xf (t). Case 1 left, case 2 right.
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Figure 5: Normalised Rayleigh source term: xb = 0,
xb = xf and xb (t) = xf (t) models.

For the combustor stability test cases (1 and 2), the
time integrated source term product, paQ

′, is shown
in Figure 4. It can clearly be seen that changing the
location of the flame-induced discontinuity alters this
source term. In fact, it appears to be generally the
case that accounting for flame movement about a given
position, and therefore changing the position of the
acoustic discontinuity with time, reduces the source term
i.e. flame movement itself has a stabilising effect.

For the limit cycle test case (3), the Rayleigh source term
is shown in Figure 5. Again, the changes induced by
altering the position of the flame-induced discontinuity
are clearly seen, with accounting for flame movement
(about the correct spatial-mean position) again showing
a stabilising effect.

To demonstrate that accounting for the movement of the
flame has an effect more generally, rather than just for the
specific test cases chosen, we consider a combustor with
the same characteristics as in the limit cycle test case,
but with downstream combustor lengths ranging from
0.7 m to 1.15 m. The relative errors between the peak
amplitude of the xb = xf and xb (t) = xf (t) simulations
are shown in Figure 6. This confirms that the movement
of the discontinuity can induce large changes in limit
cycle amplitude across a range of conditions.

Conclusion
Because the flame is compact when compared to the
acoustic wavelength scale, changing the position of the
flame-induced discontinuity had previously not been
attempted in anchored ducted–flame model implementa-
tions. However, it has been shown in this paper that
applying the discontinuity at the steady spatial-mean
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Figure 6: Relative difference between the xb = xf and
xb (t) = xf (t) model peak amplitudes.

position of the flame, or better yet taking into account
the time variation of the average flame position, leads to
changes in the modes, stability and limit cycle amplitude
of the system. This is due to a more accurate modelling of
the pressure and heat release phase relationships, which
is essential for an adequate modelling of combustion
instabilities.
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