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Abstract

When investigating combustion instabilities using analytical models, it has previously been

assumed that the compact flame assumption implied that the flame-front movement did not need

to be taken into account to solve the acoustics. This paper shows that this is not necessarily the

case. This paper presents a generalisation of such models of anchored V-flames to allow the flame

“source” of acoustic waves to vary its position in time so as to track the flame-front location.

A method for solving this problem is then presented. It is found that accounting for the flame

front movement can alter both the linear stability of the combustor, and (for cases that remain

unstable) the limit cycle amplitude. Significant changes in limit cycle amplitude are observed

across a large range of operating conditions. The flame front movement has so far only been

seen to provide a stabilising effect, reducing the Rayleigh source term. Self-Tuning Regulator

adaptive control methods appear to be unaffected by accounting for the moving flame front.

1 Introduction

The drive to reduce NOx emissions from aircraft and land based gas plants has motivated the use of

leaner combustion in turbine engines. This has led to the design of lean premixed combustors, where

the fuel and air are premixed upstream of the combustor chamber, and the fuel to air concentration

is small compared to stoichiometric conditions. In lean premixed combustion, the flame and heat

release are very sensitive to external perturbations (Candel, 2002; Lieuwen, 2003). In certain cases,

this can induce self sustained combustion instabilities driven by the two-way interaction of combustor

acoustics and unsteady heat release (Rayleigh, 1878). These combustion instabilities lead to an
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increase in noise and can have an important impact on the structural behaviour of the combustor.

Understanding, preventing and suppressing these instabilities is therefore a research priority.

In order to model combustion instabilities, it is necessary to combine an acoustic model and a flame

model. The former captures the generation of acoustic waves by unsteady heat release and their

subsequent behaviour within the combustor, whilst the latter models the response of the unsteady

heat release rate to acoustic perturbations. It has been widely shown that linear acoustic models

suffice (Peracchio and W. M. Proscia, 1999; Noiray et al., 2008), even in limit cycle. Acoustic

models which are based on either Galerkin basis expansions (Culick, 1988) or a wave description

(Dowling and Stow, 2003) can be used, the latter having the advantage of allowing many types of

acoustic boundary condition and extending naturally to azimuthal as well as plane waves in annular

combustor geometries (Morgans and Stow, 2007; Stow and Dowling, 2009). The flame model must

be non-linear in order to capture saturation into limit cycle for unstable combustors (Peracchio and

W. M. Proscia, 1999; Noiray et al., 2008), and is therefore more challenging. Much work has been

done to understand the response of the flame and heat release to perturbations in both laminar and

turbulent flames (Candel, 2002; Lieuwen, 2003; Preetham and Lieuwen, 2007; Hemchandra et al.,

2011). Recent examples include showing that variations in laminar burning velocity due to flame

stretch and curvature can induce decay of flame wrinkling for high Strouhal numbers (Preetham

et al., 2010), and that accounting for the effects of phase velocity near the flame can alter the flame

describing function and hence the limit cycle amplitude (Preetham et al., 2008; Kashinath et al.,

2013). Even though limit cycle oscillations are the most widely observed non-linear final state, it has

recently been found that other non-linear final states, such as chaotic behaviour, are also possible

experimentally (Kabiraj and Sujith, 2012).

Due to the complexity of state-of-the-art combustor models, fundamental investigations are fre-

quently performed on simplified combustor models in the first instance (Dowling, 1999; Balasubra-

manian and Sujith, 2008; Hield et al., 2009; Goh and Morgans, 2013). Simple combustor models

of an ‘anchored ducted laminar flame’ which use the G-Equation flame model (Fleifil et al., 1996;

Dowling, 1999; Schuller et al., 2003; Blumenthal et al., 2013) have been particularly popular. The

G-equation models the kinematics of the flame non-linearly, capturing effects such as saturation

into limit cycle, and showing reasonable agreement with experimental results (Langhorne, 1988a;

Evesque, 2000; Schuller et al., 2003).

When implementing the G-Equation in anchored ducted-flame models, it has always previously been
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assumed that the discontinuity or “jump” in the acoustic wave amplitude due the flame remains

immobile and at the flame anchor position. This is despite the fact that the time-space average

position of the flame is generally located a distance downstream of the anchor, and that furthermore

the instantaneous spatially averaged position of the flame oscillates in time. Some work has already

been done to take into account a varying time delay required for a perturbation to reach the flame

(Yuan et al., 2010), but these do not include the effects of a moving acoustic discontinuity.

In the compact assumption, the stream-wise extent of the flame as well as the extent of its motion

are assumed small compared to the wavelength of the acoustic modes. Other works have investi-

gated the validity of assuming that the streamwise extent of the flame is small (Rayleigh, 1878;

Noiray et al., 2008). In this work we investigate the effect of the flame motion, assuming that at

any moment in time the flame itself is compact. Whilst it seems intuitive that the large flame oscil-

lations associated with limit cycle oscillations (ensuing from linear instability) are likely to induce

a dependence on the flame motion, we also explain that the time-variation can affect linear stabil-

ity itself. Thus we perform an investigation into the effect of a time-varying flame front location

on thermoacoustic oscillations, and on the Rayleigh source term that drives them. For simplicity,

we neglect hydrodynamic effects and any turbulent perturbations; this means that the flame-front

cannot be multi-valued (Shin and Lieuwen, 2013), thus allowing the kinematic flame front tracking

version of the G-equation to be used.

In order to do this, we derive the expressions governing the spatially-averaged flame location (which

varies with time), and we then allow the position of the discontinuity in the acoustic wave amplitude

to track this in time. This enables us to compare the thermoacoustic behaviour under three different

assumptions:

• The flame-induced discontinuity in acoustic wave amplitude is fixed at the flame anchoring

point (i.e. the standard implementation).

• The flame-induced discontinuity in acoustic wave amplitudes is fixed at the space-averaged

steady flame position.

• The flame-induced discontinuity in acoustic wave amplitudes moves in time to match the

spatial-mean of the heat release location.

This allows us to deduce whether the shift in the time-mean position of the discontinuity, or its

time-variation, are responsible for changes in the thermoacoustic behaviour.
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Figure 1: Schematic of the combustor duct, showing the incoming and outgoing pressure waves and the
pressure reflection coefficients at the boundary. The discontinuity in acoustic wave amplitude is positioned
at the point where the flame is anchored to the flame holder: xb = 0.

2 Review of the anchored ducted-flame model

We first review the anchored ducted V-flame model in the form in which it has previously been used.

The model considers (i) the acoustic waves and (ii) the flame motion, coupling these via equations

for the “jumps” or discontinuities in acoustic variables across the flame anchor position.

Considering first the acoustic waves, the steady mean flow is considered uniform upstream and

downstream of the flame, and vorticity and entropy waves are neglected. The flow variables can

be decomposed into a steady mean, and a small acoustic fluctuation: (p (x, t) , u (x, t) , ρ (x, t)) =(
P ,U, ρ

)
+ (pa (x, t) , ua (x, t) , ρa (x, t)), such that only linear fluctuations need be retained. Fre-

quencies are assumed sufficiently low for only plane acoustic waves to exist (Dowling and Williams,

1983), and the linearised acoustic equations are obtained as:

1

c̄2
∂pa
∂t

+ ρ̄
∂ua
∂x

+
Ū

c̄2
∂pa
∂x

= 0

ρ̄

(
∂ua
∂t

+ Ū
∂ua
∂x

)
= −∂pa

∂x
(1)

where the density is ρa (x, t) = pa(x,t)
c2

and c is the speed of sound.

The acoustic pressure pa, acoustic velocity ua, and acoustic density ρa can then be solved analytically

using the method of characteristics (Rienstra and Hirschberg, 2012); with upstream and downstream

travelling acoustic waves either side of the “flame”, as shown in Figure 1.

Upstream of the flame-induced discontinuity (indicated by subscript u) the acoustic variables are
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(Dowling, 1997):

pa (x, t) = C (t− τuC (x)) +A (t+ τuA (x)) (2)

ua (x, t) =
C (t− τuC (x))−A (t+ τuA (x))

ρucu
(3)

ρa (x, t) =
C (t− τuC (x)) +A (t+ τuA (x))

c2u
(4)

while downstream (indicated by subscript d):

pa (x, t) = B (t− τdB (x)) +D (t+ τdD (x)) (5)

ua (x, t) =
B (t− τdB (x))−D (t+ τdD (x))

ρdcd
(6)

ρa (x, t) =
B (t− τdB (x)) +D (t+ τdD (x))

c2d
(7)

The time delays

τuA (x) =
x− xb
cu − Uu

τuC (x) =
x− xb
cu + Uu

(8)

τdB (x) =
x− xb
cd + Ud

τdD (x) =
x− xb
cd − Ud

(9)

represent:

• τuA (x): the time taken for wave A to go from the discontinuity xb to a point upstream x;

• τuC (x): the time taken for wave C to go from a point upstream x to the discontinuity xb;

• τdB (x): the time taken for wave B to go from the discontinuity xb to a point downstream x;

• τdD (x): the time taken for wave D to go from a point downstream x to the discontinuity xb.

Pressure reflection coefficients are used to impose physical behaviour at boundaries:

C (t− τuC (xu)) = RuA (t+ τuA (xu)) (10)

D (t+ τdD (xd)) = RdB (t− τdB (xd)) (11)

After a simple shift in time we obtain:

C (t) = RuA (t− τu) (12)

D (t) = RdB (t− τd) (13)
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where τu = −τuA (xu)− τuC (xu) and τd = τdB (xd) + τdD (xd).

The effects of the flame on the acoustics are imposed at the flame anchoring position. Wave ampli-

tudes either side of the the anchor position are related by imposing the flow conservation equations

across the flame (Dowling, 1997). The conservation of energy means that the acoustic wave am-

plitudes are not constant across the flame, but rather experience a “jump” or discontinuity, which

depends upon the total heat release rate, Q, of the flame (Dowling, 1995, 1997). The non-linear

form of the jumps is given as:

ρuuu [u] + [p] = 0 (14)

γ

(γ − 1)
[up] +

1

2
ρuuu

[
u2
]

=
Q

Aduct
(15)

where we use the continuity equation to write [ρu] = ρ (0d, t)u (0d, t)− ρ (0u, t)u (0u, t) = 0, and all

variables are evaluated at x = 0. We note that γ is the specific heat capacity, and Aduct the area of

the duct cross-section. Linearising these equations, and using the fact that the above equations are

satisfied by the steady flow yields:

ρuUu [ua] + [pa] +
(
ρuuau + Uuρau

) [
U
]

= 0 (16)

γ

(γ − 1)

([
Upa

]
+
[
Pua

])
+ ρuUu

[
uaU

]
+

1

2

(
ρuuau + ρaUu

) [
U

2
]

=
Q′

Aduct
(17)

A flame model is needed to capture how the variation in Q(t) depends on the incoming acoustic

excitation. The well-known G-Equation model assumes that the flame responds to the flow velocity

directly upstream, its motion being governed by a non-linear partial differential equation: the G-

Equation. This is derived by assuming that the flame initiation surface, G, is convected by its

relative burning velocity ugutter − Su/n (n being the unit normal to the flame), such that DG
Dt = 0

(Kerstein et al., 1988). The movement and shape of the flame are then tracked by considering

G = x − ξ (r, t) (Fleifil et al., 1996; Dowling, 1999); this yield the simpler flame-front tracking

version of the G-Equation:

∂ξ

∂t
= ugutter − Su

√
1 +

(
∂ξ

∂r

)2

(18)

where ugutter is the velocity just upstream of the discontinuity, r is the radial position in the duct, and

Su is the laminar burning velocity, usually chosen empirically. For one dimensional flow, the velocity
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ugutter is given by the sum of steady and fluctuating acoustic velocity, ugutter = Uu + ua (0u, t).

Anchoring of the flame is imposed through ξ = 0 at the anchor point (here x = xb = 0).

The steady state of the flame is obtained by writing:

Uu − Su

√
1 +

(
∂ξ

∂r

)2

= 0 (19)

which leads to the steady solution

∂ξ

∂r
= ±

√(
Uu
Su

)2

− 1 (20)

The full steady shape of the flame is easily obtained from (20) and the anchoring boundary condition.

It is assumed that Q (t) ∝ A (t− τf ) (Dowling, 1999; Wang and Dowling, 2005; Preetham et al.,

2010) where τf is chosen empirically as τf = 0.42(xd−xb)
ugutter

and the flame area A is given by:

A (t) =

∫ rb

ra

2πR

√
1 +

(
∂ξ

∂r

∣∣∣∣
r=R

)2

dR (21)

where ra is the radius of the flame holder, and rb is the radius of the duct. Thus at any point in

time, the jump in the wave amplitude either side of the flame depends on the flame area and hence

the instantaneous flame shape.

3 Time-varying systems: effect on linear stability

Although the flame moves in the duct around its anchoring point in the ducted flame model described

above, the location at which the resulting discontinuity in the acoustic wave strengths occurs is

assumed fixed in time. If the movement of this discontinuity was accounted for, it would become

time-varying; the acoustic time-delays relevant to the flame would then also be time varying, as

shown in Figure 2. The effect of this on the ducted-flame model will be investigated later. First

however, it is instructive to consider the effect that time-variation can have on linear stability. It

seems intuitive that during limit-cycle, when the flame oscillations are large, non-linear time-varying

effects are likely to be important. However, time-variation can also affect linear stability, as shown

in the illustrative example below.

Consider the one degree of freedom system represented by a second order differential equation with

7



Flame

Acoust. (time var.)

i ugutter Q′

−

ua

Figure 2: Block diagram of the ducted flame with time varying acoustics. i denotes the external perturbation.
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Figure 3: Ince-Strutt stability diagram of the Mathieu Equation.

a time varying coefficient, as shown in equation (22). This is known as the Mathieu equation, and

the analysis of its stability is the subject of Floquet Theory (Floquet, 1883; Bessa, 2012; Ghose

Choudhury and Guha, 2014).

∂2u

∂t2
+
(
a− 2a′ cos (2t)

)
u (t) = 0 (22)

The stability diagram of the above Mathieu equation is shown in Figure 3, having been calculated

using the method of Hill’s determinant. The curve shows the frontier between stability and insta-

bility, with the stable region lying below the curve. The stable region is a function of ā and a′; as

the amplitude of oscillations increases, the stable region becomes smaller, and new unstable regions

appear. This serves to illustrate that time variation can affect linear stability at small amplitudes,

as well as being influential under large amplitude oscillations.
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4 Varying the discontinuity position in the G-Equation ducted

flame model

In section 2, the position at which the flow conservation equations (16) and (17) were applied and at

which the acoustic waves experienced a discontinuity (xb), was fixed in time at the flame anchoring

position, xb = 0. For compact flames and small amplitude oscillations, this is usually a good

approximation (Dowling, 1997). However, when the combustor is unstable, the amplitude of the

flame motion can become large (Langhorne, 1988b). Then, even under the simplifying assumption

that the heat release occurs at a single axial location (necessary when assuming plane acoustic

waves), xb (t), the flame-induced acoustic wave discontinuity should track the spatially-averaged

flame position xf (t).

In order to track xf (t), and allow a time variation in the acoustic wave discontinuity, the time

delays (8) and (9) become:

τuA (x, t) =
x− xb (t)

cu − Uu
τuC (x, t) =

x− xb (t)

cu + Uu
(23)

τdB (x, t) =
x− xb (t)

cd + Ud
τdD (x, t) =

x− xb (t)

cd − Ud
(24)

where xb (t) tracks the average location of the heat release, xf (t), in time, i.e. xb (t) = xf (t). xf (t)

is given by the area-weighted mean flame position (as Q(t) ∝ A(t− τf )):

xb (t) = xf (t) =

∑n
k=1Ak (t− τf ) ξk (t− τf )∑n

k=1Ak (t− τf )
(25)

where each subscript k denotes a section of the flame cut along r. As such, Ak is the incremental

flame area at the discrete position ξk, computed in a similar fashion to equation (21) such that

A =
∑n

k=1Ak.

Equations (3), (18), (21) and (25) show that the flame shape, flame area and hence mean flame

position depend on the acoustic wave amplitudes just upstream of the flame. These depend on the

flame front location both at the current time and at some previous times (due to propagation delays).

In conclusion, the acoustic wave amplitude ahead of the flame depends on the flame position, but

the flame position depends on these wave amplitudes, thus the acoustic discontinuity location and

the flame position are now coupled.
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To overcome this problem, we know that waves A and B, moving away from the discontinuity, are

obtained directly from the jump equations, and are not part of the coupled problem (even if the

location at which they are emitted is for now unknown). The amplitude of waves C and D as they

arrive at the discontinuity requires more work. From equations (12) and (13), it follows that C and

D at xb(t) depend only on the outgoing wave amplitudes A and B at previous times t − τu and

t−τd. Note that τu and τd now represent the times taken for a wave to travel from the discontinuity

to the boundary and back to the changed position of the discontinuity again.

It is important to point out the times for which we write τuA , τdB , τuC and τdD . Consider that

we wish to observe the effects of incoming pressure waves on the flame induced discontinuity at a

time t. We must know the values of the time delays τuc and τdD when waves C and B arrive at the

discontinuity, i.e. at time t. In this case, it is clear that we must know the value of the time delays

τdB and τuA when the waves A and B left said discontinuity; i.e. at time t − τu and t − τd. This

yields :

τu (t) = −τuA (xu, t− τu)− τuC (xu, t) (26)

τd (t) = τdB (xd, t− τd) + τdD (xd, t) (27)

Using expressions (23) and (24), it is now clear that our above time delays, and therefore waves C (t)

and D (t), depend on the 3 different positions of the flame induced discontinuity; namely xb (t− τu),

xb (t− τd), and xb(t).

As is common in moving acoustic source problems, such as those encountered in helicopter acoustics

(Morgans et al., 2005), the problem must be solved iteratively. The three coupled equations to be

solved iteratively and simultaneously are:

τu = −xu − xb (t− τu)

cu − Uu
− x− xb (t)

cu + Uu
(28)

τd =
xd − xb (t− τd)

cd + Ud
+
x− xb (t)

cd − Ud
(29)

xb (t) = xf (t) =

∑n
k=1Ak (t− τf ) ξk (t− τf )∑n

k=1Ak (t− τf )
(30)

where Ak is obtained from the discrete version of (21), and ξk is obtained from the discrete version

of (18). This system is readily solved using Newton-Raphson iterative methods.
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Table 1: Combustor parameters used in test cases showing the effect of the moving acoustic discontinuity.

Case xu[m] xd[m] xref [m] Ru Rd Mu

1 -0.3 .841 0.33 -1 -1 0.08

2 -1.5 .6855 0.22 0.85 -.98 0.08

3 -1.0 1.2 0.33 0.85 -.98 0.08

5 Results and discussion

To investigate the effects of implementing the acoustic jump location more accurately, two sets of

combustor test cases are considered. The first two cases are concerned with combustor stability,

while the third considers limit cycle amplitude. For both sets, the upstream total temperature

is T0 = 288 K, mean heat release rate is Q = 59 MJ m2/s, downstream mean pressure is P =

1.013 · 105 Pa and duct dimensions are ra = 1.75 cm and rb = 3.5 cm. We compare results for three

discontinuity location implementations:

• the standard ducted-flame model with xb = 0;

• the discontinuity position fixed at the space-averaged steady flame position, xb = xf ; this is

obtained from the steady form of equation (25), using the steady flame defined in (20);

• the discontinuity position moving in time to track the space-averaged flame position, xb (t) =

xf (t).

The details of the test configurations are shown in Table 1.

In order to isolate the effect of time variation in the flame position, the flame time delay τf in the

flame relation Q (t) ∝ A (t− τf ) will be assumed constant here. It has previously been given as

τf = 0.42(xd−xb)
ugutter

(Wang and Dowling, 2005), implying a time varying flame time delay for cases in

which xb varies with time.

To obtain the results below, equation (18) is solved using a fourth order Runge-Kutta method for

time integration, with time steps δt = 2, 5 · 10−5 s, δt = 3 · 10−5 s and δt = 1 · 10−5 s for the three

test cases respectively. A simple first order backward Euler method is used for spacial derivatives,

using 64 points over a cross section of 1.75 cm.
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Table 2: Combustor pressure dominant oscillation frequencies for the test cases investigating combustor
stability and limit cycle amplitude.

Angular frequencies [rad/s]

Case xb = 0 xb = xf xb (t) = xf (t)

1 488 278 278

2 335 359 359

3 556 300 291

5.1 Combustor stability

In order to illustrate the effect that a time-varying flame position can have on combustor stability,

test cases 1 and 2 are considered. The combustor geometries, upstream Mach number and boundary

reflection coefficients are shown in Table 1.

The dominant oscillation frequencies for these test cases are shown in Table 2. It is seen that

accounting for the shift in the spatial-mean position of the flame gives rise to a frequency shift of

up to 46%, due to the change in mode shape (the cold and hot proportions of the duct vary when

the flame location is shifted).

The envelopes of the corresponding pressure oscillations are shown in Figures 4(a) and 4(b), where

the normalised acoustic pressure, pref , at location xref is given. For both cases:

• xb = 0 gives rise to an unstable system which quickly saturates into a limit cycle.

• xb = xf gives rise to an unstable system with a much lower oscillation amplitude (still slowly

growing – true limit cycle saturation has not yet occurred)

• xb (t) = xf (t) gives rise to a stable system whose oscillation amplitude is slowly decaying.

Thus accounting for the movement of the flame (by varying the position at which the flame-induced

discontinuity is assumed to occur) is seen to have a stabilising effect on the system, to the extent

that it can render a combustor stable which, for a fixed flame position, is unstable. In the same

way that time variation in the simple example of Section 3 was able to alter linear stability, we find

that this is also occurring in these thermoacoustics simulations.

5.2 Limit cycle amplitude

In order to illustrate the effect of time variation on limit cycle amplitude, for combustors where the

system remains unstable both in the absence and presence of a time varying flame position, test

case 3 considers high amplitude limit cycle oscillations. These give rise to large amplitude motion

12
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(a) Envelope of the normalised pressure pref for test case
1: ◦ xb = 0 (multiplied by a factor 1/6); xb = xf ; +
xb (t) = xf (t).
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(b) Envelope of the normalised pressure pref for test case
2: ◦ xb = 0 (multiplied by a factor 1/5.6); xb = xf ;
+ xb (t) = xf (t).
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(c) Normalised limit cycle pressure fluctuation, pref : ◦ xb = 0; xb = xf ; + xb (t) = xf (t)
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xf (t) model peak amplitudes (+), and absolute value of
the peak amplitude in the xb = xf configuration (4) .

Figure 4: Pressure calculated with the new model and compared to standard anchored ducted flame results.
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of the flame-induced discontinuity. The combustor parameters are summarised in Table 1.

The dominant oscillation frequency shown in Table 2 shows a significant shift depending on where

the discontinuity is imposed. The corresponding pressure oscillations are shown in Figure 4(c). It

can be observed that using xb (t) = xf (t) leads to a substantial 38% decrease in negative peak

amplitude when compared to the xb = xf case. Furthermore, the xb (t) = xf (t) configuration leads

to a pulsating limit cycle regime, where the peak of the pulse is obtained at t ≈ 0.89 s in Figure 4(c).

This demonstrates that there are likely to be conditions under which accounting for flame movement,

by changing the location of the acoustic discontinuity, is important in determining the limit cycle

amplitude.

Accounting for the movement of the flame has an effect more generally, rather than just for the

specific test cases chosen. To show this we consider a combustor with the same characteristics as

in test case 3, but with downstream combustor lengths ranging from 0.7 m to 1.5 m. The relative

difference between the peak amplitudes of the xb = xf and xb (t) = xf (t) configuration are shown

in Figure 4(d). This confirms that the movement of the discontinuity can induce large changes in

limit cycle amplitude across a range of conditions. Furthermore, it is clear that large limit cycle

amplitude in the xb = xf configuration leads to a larger impact of the moving acoustic discontinuity

on limit cycle amplitude.

5.3 Rayleigh source term

To further understanding of why applying the acoustic jump location more accurately affects both

stability and limit cycle amplitudes, the well-known Rayleigh source term, paQ
′ (averaged over an

oscillation cycle) is considered. It is known from the Rayleigh criterion (Rayleigh, 1878; Chu, 1964;

Durox et al., 2009) that the larger this source term, the more likely it is to exceed loss terms and

give rise to instability.

For the combustor stability test cases (1 and 2), the time integrated source term product, paQ
′, is

shown in Figures 5(a) and 5(c). The pressure pa in the source term is calculated from the average

of the upstream and downstream acoustic pressure at the acoustic discontinuity. It can clearly be

seen that changing the location of the flame-induced discontinuity alters this source term. In fact,

it appears to generally be the case that accounting for flame movement about a given position, and

therefore changing the position of the acoustic discontinuity with time, reduces the source term i.e.

flame/acoustic discontinuity movement itself has a stabilising effect.
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The phase difference (obtained from the Hilbert transform) between the pressure at the flame, pa,

and the heat release fluctuation, Q′, are shown in Figures 5(b) and 5(d). For test case 1, the

boundaries of the system are perfectly reflective (i.e. Ru = Rd = −1) meaning that all remaining

boundary losses are due to the mean flow (Nicoud and Wierczorek, 2009). For this case, the phase

difference shown in Figures 5(b) and with the xb = xf configuration oscillates around the upper

phase instability limit as defined by the Rayleigh criterion: π
2 . A phase value so close to the

instability limit explains why this system is only just unstable. A similar argument can be made

for test case 2, except that it suffers from small losses at the boundary not just associated to the

mean flow. Therefore, for the xb = xf configuration to remain unstable, pa and Q′ must be “more in

phase” (the phase difference between pa and Q′ now oscillates around 0.445π, as opposed to test case

1 where it oscillated around 0.497π), as is shown in Figure 5(d). Note that the oscillations of the

phase relationship in the xb = xf configuration are due to the non-linear effects of the G-Equation

(18) (Lieuwen, 2005).

For both test cases 1 and 2 in the xb (t) = xf (t) configuration, the Rayleigh source terms remain

positive even though the systems are stable. This can be explained by the losses in the system

due to mean flow, and non reflective boundary conditions. Also, the higher initial values of the

Rayleigh source term are due to higher amplitudes of oscillations after the initial perturbation. The

effect of the moving discontinuity leads to greater amplitude oscillations of the phase relationship,

which are not perfectly symmetric about the (previous) mean value. The higher amplitude of the

phase oscillations in the xb (t) = xf (t) configuration, along with their asymmetry, participate in the

stabilisation of the system: the heat release and acoustic pressure are more “out of phase” overall.

For the limit cycle test case (case 3), the Rayleigh source term is shown in Figure 5(e). Looking

first at the xb = xf configuration, we can see that settling into limit cycle oscillations occurs when

the phase difference oscillations induce no change in system energy over one period. The moving

acoustic discontinuity xb (t) = xf (t), induces a stabilising effect, and therefore a faster onset of

limit cycle saturation. It is interesting to see that the low frequency oscillations observed in the

Rayleigh source term coincide with low frequency pulsations in the Rayleigh phase difference. As

the phase pulsation amplitude increases well above 0.5π, the Rayleigh source term decreases, the

pressure fluctuation amplitude decreases, and the motion of the flame becomes smaller. This leads

to smaller variations of the phase difference between pa and Q′, so that the phase now remains

between (−0.5π, 0.5π), destabilising the system and leading to an increase in the Rayleigh source
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(d) Test Case 2: Phase difference between pa and Q′
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Figure 5: Rayleigh source term and phase difference between the pressure at the flame pa and Q′ for different
test cases: xb = xf ; + xb (t) = xf (t).
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term and the pressure fluctuating amplitude. This explains the pulsation that was observed on

Figure 4(c).

In summary, the effect of applying the discontinuity in acoustic wave amplitude so as to represent

the time variation of the flame location can have an important effect on both the thermoacoustic

stability and the dominant frequency. Some of this is due to the shifting of the average proportions

of hot and cold regions of the duct (i.e. applying the discontinuity at the correct time-space mean

location of the flame). However, the time variation of the flame induced discontinuity also appears

to be feeding into the thermoacoustic characteristics, with the possibility of it affecting the stability

and limit cycle amplitude of the combustor.

6 Adaptive control

Adaptive controllers have previously been shown to stabilise the instabilities exhibited by anchored

ducted flames (both modelled using the G-Equation and experimentally). Self-tuning regulator

(STR) adaptive controllers, for example, have been found to achieve stabilisation well beyond the

bounds for which Lyapunov theory guarantees stabilisation (Evesque et al., 2000, 2003; Dowling and

Morgans, 2005; Morgans and Annaswamy, 2008). It is therefore interesting to investigate whether

time variation in the acoustic discontinuity location poses any complications when implementing

adaptive control of this form. Adaptive control will be applied by measuring the acoustic pressure

in the tube at a point xref and injecting and modifying the acoustic velocity upstream of the

combustor at position xu. Modifying the acoustic velocity has been shown to have a similar effect

on the equivalence ratio as modifying the fuel input mass flow rate to the system (Lieuwen and

Zinn, 1998).

6.1 Self Tuning Regulator Algorithm

We can define our combustor system with the plant F (s) =
pref (s)
i(s) where i (s) denotes the external

perturbation to the system, and s is the Laplace variable. We apply a controller K (s) = vc(s)
pref (s)

,

obtaining the closed loop block diagram shown in Figure 6.

Choosing a simple lead-lag compensator as a controller structure, our controller transfer function
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F (s)

K (s) = k1(t)(s+zc)
s+zc+k2(t)

i (s) e (s) pref (s)

−

vc (s)

Figure 6: Block diagram of the sytem with an adaptive controller.

can be written as

K(s) = k1(t)
s+ zc

s+ zc + k2(t)
(31)

where zc determines our controller zero, and k1(t) and k2(t) are our adaptive coefficients whose time

scale is much greater that the period of oscillation of the instability of F (s) (Evesque et al., 2003).

Assuming that our closed loop system has no right half plane zeroes (Evesque et al., 2003; Morgans

and Annaswamy, 2008), and that its relative degree is smaller or equal to one (Narendra and

Annaswamy, 2009; Evesque et al., 2000), then there exists a Lyapunov function which will ensure

system stability of the equivalent linear system if the following update rules are used:

dk1(t)

dt
= −g1pref (t)2 (32)

dk2(t)

dt
= g2pref (t)V (t) (33)

where g1, g2 are the adaptation rates of the updates rules, chosen to ensure good controller coefficient

convergence rates, and positive high frequency gains of the closed loop system (Illingworth and

Morgans, 2010), and ∂V
∂t = −zcV (t) + vc (t).

6.2 Adaptive control applied to the moving acoustic discontinuity model

The STR control method proposed above is theoretically guaranteed to stabilise combustors obeying

a set of general criteria. It has however been shown to provide stabilisation even when these criteria

are not fully met (e.g. for systems with small time delays) (Evesque et al., 2000, 2003; Dowling

and Morgans, 2005). We now wish to determine the performance of these STR controllers with the

18



added complexity of a moving acoustic discontinuity.

The adaptive controller was applied to the test cases presented in section 5. For test cases 1 and 2, the

system is already stable when xb (t) = xf (t). The adaptive control in this case simply accelerates

convergence. From Figure 7 we can see that the STR algorithm converged the adaptive control

coefficients k1 and k2 to comparable values for both the xb = xf and xb (t) = xf (t) configurations,

and for all three test cases, with the greatest different appearing in test case 3.

The small difference between the adaptive controller coefficients for the moving discontinuity and

fixed discontinuity cases clearly shows that the moving acoustic discontinuity only has a very limited

impact on the applicability of adaptive controllers to the system.
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(c) Normalised acoustic pressure pref , test case 2.
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(e) Normalised acoustic pressure pref , test case 3.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

100

200

300

Time [s]

C
on
tr
ol
le
r
co
effi

ci
en
ts

(f) Controller coefficients, test case 3; dashed lines indi-
cate k2 (t)

Figure 7: Adaptive control results for test cases 1, 2 and 3; xb = xf ; + xb (t) = xf (t);
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7 Conclusion

In anchored ducted flame models for combustion instability, the spatial extent of both the flame

and its range of movement are typically small compared to the acoustic wavelength. Accounting

for the effect of flame movement on thermoacoustic behaviour has thus previously been thought

unnecessary. We have shown, in this paper, that this is not necessarily the case.

By allowing the flame “source” of acoustic waves to vary in time, so as to track the flame move-

ment, we have investigated the effect of a moving flame front. The above problem further couples

the acoustics and flame equation, and we have a “retarded-time” method for solving this coupled

problem. We have shown that accounting for the moving flame front can alter both linear stability

and (for unstable systems) the limit cycle amplitude. A moving flame front has so far only been seen

to provide a stabilising effect, resulting in a reduction in the Rayleigh source term, compared to the

“frozen” flame front case. Reassuringly, flame front movement is not seen to substantially affect the

performance of Self-Tuning Regulator adaptive controllers for suppressing combustion instabilities.
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